AMPK y sus adaptaciones musculares secundarias a entrenamiento de tipo endurance e interválico.
DOI:
https://doi.org/10.59856/arch.soc.chil.med.deporte.v63i2.34Palabras clave:
AMPK, endurance entrenamiento muscular, función mitocondrial, HIITResumen
Introducción: AMPK es una proteína que funciona como sensor energético cuya función es integrar y comunicar los cambios que se producen a nivel celular, con el fin deestimular la función mitocondrial y que esta produzca adaptaciones frente a diversos cambios metabólicos. Se han descrito cambios importantes después de entrenamientos de tipo aeróbico y sobre todo en individuos que practican ejercicios de endurance en comparación a los no entrenados.
Materiales y método: En esta revisión se investigó el rol de AMPK y la expresión de diferentes proteínas según la intensidad de ejercicio realizado. Se realizó una revisión bibliográfica sobre las adaptaciones fisiológicas en relación a protocolos de ejercicio de tipo interválico y endurance en modelos experimentales realizados en los últimos 7 años, tanto en humanos como en ratas.
Resultados: Al comparar ambos protocolos de ejercicio no existen diferencias significativas, sin embargo se puede concluir que tanto los protocolos de ejercicio HIIT como endurance activan la función de AMPK, y esto produce cambios en la función mitocondrial a través de la activación de proteínas o expresión de genes como respuesta a la actividad realizada.
Descargas
Referencias
Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci. enero de2004;29(1):18-24.
Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase- -the fat controller of the energy railroad. Can J Physiol Pharmacol. julio de 2006;84(7):655- 65.
Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. enero de 2005;1(1):15-25.
Corton JM, Gillespie JG, Hardie DG. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol. 1 de abril de 1994;4(4):315-24.
Hardie DG. The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci. 1 de noviembre de 2004;117(Pt 23):5479-87.
Hardie DG, Salt IP, Hawley SA, Davies SP. AMP-activated protein kinase: an ultrasensitive system for monitoring celular energy charge. Biochem J. 15 de marzo de 1999;338(Pt 3):717-22.
Fryer LGD, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 12 de julio de 2002;277(28):25226-32.
Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. febrero de 1996;270(2 Pt 1):E299-304.
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 22 de marzo de 2012;13(4):251-62.
Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol (Lond). 15 de septiembre de 2006;575(Pt 3):901-11.
Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity Interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms: Interval training adaptations. The Journal of Physiology. 15 de marzo de 2010;588(6):1011-22.
Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol (Lond). 15 de mayo de 2010;588(Pt10):1779-90.
Cochran AJR, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, et al. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations: Muscle adaptations to high-intensity exercise training. Experimental Physiology. 1 de mayo de 2014;99(5):782-91.
Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to lowvolume, high-intensity interval training in health and disease. J Physiol (Lond). 1 de marzo de 2012;590(5):1077-84.
Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMPactivated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. diciembre de 1997;273(6 Pt1):E1107-1112.
Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. junio de 2005;98(6):1985-90.
Theurel J, Lepers R. Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling. Eur J Appl Physiol. julio de 2008;103(4):461-8.
Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JFP. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise: AMPK expression and signalling in type I and II muscle fibres. The Journal of Physiology. 15 de abril de 2015;593(8):2053-69.
Di Donato DM, West DWD, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitocondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol Endocrinol Metab. 1 de mayo de 2014;306(9):E1025-1032.
Joseph A-M, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM-D, et al. The impact of aging on mitocondrial function and biogenesis pathways in skeletal muscle of sedentary high- and lowfunctioning elderly individuals. Aging Cell. octubre de 2012;11(5):801-9.
Jacobs RA, Lundby C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Journal of Applied Physiology. febrero de 2013;114(3):344-50.
Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. junio de 2011;300(6):R1303-10.
Bartlett JD, Hwa Joo C, Jeong T-S, Louhelainen J, Cochran AJ, Gibala MJ, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. abril de 2012;112(7):1135-43.
Tarini VAF, Carnevali LC, Arida RM, Cunha CA, Alves ES, Seeleander MCL, et al. Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats. Journal of Physiology and Biochemistry. septiembre de 2013;69(3):429-40.
Brandauer J, Andersen MA, Kellezi H, Risis S, Frøsig C, Vienberg SG, et al. AMPactivated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Frontiers in Physiology [Internet]. 24 de marzo de 2015 [citado 17 de agosto de 2018];6. Disponible en: http://www.frontiersin.org/Striated_Muscle_Physiology/10.3389/fphys.2015.00085/abstract
Taylor CW, Ingham SA, Hunt JEA, Martin NRW, Pringle JSM, Ferguson RA. Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals. European Journal of Applied Physiology. agosto de 2016;116(8):1445-54.
Casuso RA, Plaza-Díaz J, Ruiz-Ojeda FJ, Aragón-Vela J, Robles-Sanchez C, Nordsborg NB, et al. High-intensity highvolume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii. Lucía A, editor. PLOS ONE. 3 de octubre de 2017;12(10):e0185494.
Lantier L, Fentz J, Mounier R, Leclerc J, Treebak JT, Pehmøller C, et al. AMPK controls exercise endurance, mitocondrial oxidative capacity, and skeletal muscle integrity. The FASEB Journal. julio de 2014;28(7):3211-24.
Popov et al. - 2017 - AMPK does not play a requisite role in regulation.
Cochran AJR, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, et al. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Experimental Physiology. 1 de mayo de 2014;99(5):782-91.
Boyd JC, Simpson CA, Jung ME, Gurd BJ. Reducing the Intensity and Volume of Interval Training Diminishes Cardiovascular Adaptation but Not Mitochondrial Biogenesis in Overweight/Obese Men. Earnest CP, editor. PLoS ONE. 5 de julio de 2013;8(7):e68091.
Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle viadirect phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 17 de julio de 2007;104(29):12017-22.
Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, Lin J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 1 de febrero de 2004;18(3):278-89.
Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP, et al. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem. 4 de septiembre de 2009;284(36):23925-34.
Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. febrero de 2010;95(2):351-8.
Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol. marzo de 2009;106(3):929-34.
Tobina T, Yoshioka K, Hirata A, Mori S, Kiyonaga A, Tanaka H. Peroxisomal proliferator-activated receptor gamma coactivator- 1 alpha gene expression increases above the lactate threshold in human skeletal muscle. J Sports Med Phys Fitness. diciembre de 2011;51(4):683-8.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2018 Archivos de la Sociedad Chilena de Medicina del Deporte

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.